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Abstract. A method is presented for the analysis of the scalar potential in the general two-Higgs-doublet
model. This allows us to give the conditions for the stability of the potential and for electroweak symmetry
breaking in this model in a very concise way. These results are then applied to two different Higgs potentials
in the literature, namely the MSSM and the two-Higgs-doublet potential proposed by Gunion et al. The
known results for these models follow easily as special cases from the general results. In particular, for the
potential of Gunion et al. we can clarify the stability and symmetry-breaking properties of the model with
our method.

1 Introduction

The standard model (SM) of particle physics is theoret-
ically consistent and experimentally successful to date [1,
2]. The recently observed neutrino masses are very small
and can be neglected in most high-energy experiments.
Only one ingredient of the SM, the Higgs boson, has yet
to be discovered. From direct searches at LEP a lower
bound on the Higgs boson mass of 114.4GeV at 95% C.L.
is obtained when the data from the four LEP collabora-
tions are combined [3]. Furthermore, from measurements
of electroweak precision observables at LEP, SLC and
NuTeV that depend on the Higgs boson mass through
radiative corrections and from other W -boson measure-
ments, one obtains (see Table 10.2 in [1]) the prediction
mH = 91

+45
−32GeV. Since the one-loop corrections depend

on the Higgs mass only as log(mH/mW ), the errors are
rather large, and the upper error is larger than the lower
one. Such an indirect determination of a particle mass is
very successful in case of the top quark; see also Table
10.2 of [1]. However, there the observables have a quadratic
dependence on the mass and are therefore much more pre-
dictive. A direct discovery of the Higgs boson at the LHC
is presumably possible up to a mass of about 1 TeV; see
e.g. [4]. One or several Higgs bosons may be found open-
ing up the direct study of the scalar sector of particle
physics.
Despite its experimental success, the SM is not sat-

isfactory as a fundamental theory, not only because it
contains a large number of parameters, that is coup-
ling parameters and particle masses: the squared physi-
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cal, renormalised Higgs boson massm2H , which we expect
to be of the order of the squared vacuum expectation
value v2 ≈ (250GeV)2 of the Higgs field, receives large
quantum corrections. These corrections depend quadrati-
cally on the particle masses that the Higgs boson couples
to. This means that the Higgs boson mass is sensitive
to the heaviest particles of the theory, for instance from
physics altering the high-energy behaviour at the GUT
or the Planck scale. In principle, the corrections could
be much larger than v2 but cancel with the squared bare
mass, so that the difference gives m2H ∼ v

2. However,
such a fine-tuning is usually considered unnatural. For
this so-called naturalness problem, see e.g. [5]. A system-
atic cancellation of quantum corrections to the squared
Higgs boson mass is provided by supersymmetry [6, 7].
The simplest supersymmetric extension of the SM is the
minimal supersymmetric standard model (MSSM) [8, 9],
which has been studied extensively in the literature. In
the MSSM one has two Higgs doublets. In further ex-
tensions like the next-to-minimal supersymmetric stan-
dard model (NMSSM) [10–12] a further Higgs singlet is
added.
In this paper we study a class of general models having

a scalar sector with two Higgs doublets. We suppose that
the SU(3)C×SU(2)L×U(1)Y gauge symmetry holds. In
its simplest version the fermion content of such a model
is assumed to be the same as that of the SM. The same
is assumed for the gauge bosons, thereby avoiding the
introduction of new fundamental interactions. In prin-
ciple, electroweak symmetry breaking (EWSB) works in
these models in a similar way as in the SM. The La-
grangian contains terms that consist only of scalar fields
without derivatives. These terms form the scalar poten-
tial at tree level and are responsible for the stability and
symmetry-breaking pattern of the model. Further, through
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their covariant derivatives the scalars have couplings to
the gauge bosons, and through Yukawa interactions they
couple to fermions. After EWSB these terms are respon-
sible for the generation of the gauge-boson and fermion
masses, respectively. With increasing number of scalar
fields the number of parameters in the potential becomes
soon very large. For instance, as we shall see in Sect. 3
below, there are 14 parameters to describe the most gen-
eral potential with two Higgs doublets in contrast to only
two parameters for one doublet. Therefore the character-
isation of the symmetry breaking for different regions in
parameter space becomes increasingly complicated. We
present a formalism for the analysis of stability and of
spontaneous symmetry breaking in models with two Higgs
doublets.
There exists a vast amount of literature on the two-

Higgs-doublet model (THDM), where typically the num-
ber of parameters of the potential is restricted by con-
tinuous or discrete symmetries. For instance in [13] a de-
tailed discussion of the symmetry-breaking pattern for dif-
ferent regions in parameter space is given for the THDM
where a Z2 symmetry is imposed on the Higgs potential
and in [14] the stability of the CP conserving THDM is in-
vestigated.
We also want to mention an approach [15] to deduce the

parameter constraints from stability and symmetry break-
ing in one specific model, the THDM introduced by Gu-
nion et al. ([16, 17], see chapter 4). Further, in two comple-
mentary works [18–20], the hierarchy between the charge
breaking and the charge conserving minima is investigated
for the general THDM.
Basis independent techniques for the general THDM

are used in different recent works [21–27] to analyse vari-
ous aspects of the vacuum.
Here we deduce the parameter constraints from the sta-

bility and from the electroweak symmetry-breaking condi-
tions in the general THDM. The global minimum of the
potential is found by the determination of all stationary
points. Our results agree with those of [13] if we impose
the conditions on our parameters such that the potential
is invariant under that discrete symmetry. Moreover, our
formulation of the criteria for stability and EWSB of the
potential is very concise and should, therefore, be interest-
ing for its method. This general method, where the poten-
tial is expressed in terms of gauge invariant functions, was
proposed already in a previous work [28].
We also remark that the scope of the present analy-

sis is the classical level. In a more detailed study quantum
corrections should be taken into account. Some aspects of
radiative corrections for the Higgs potential in constrained
n-Higgs-doublet models are discussed in [29]. The question
if stability at the classical level is really necessary for a con-
sistent quantum theory was put forward a long time ago by
Symanzik [30]. The answer given in [31] was that, indeed, it
is necessary. Thus, the results obtained at the classical level
are important for the full theory.
This work is organised as follows: In Sect. 2 we give

general motivations for an extended scalar sector and re-
view theoretical and experimental constraints on Higgs
boson masses in models with two Higgs doublets. In Sect. 3

we present the Lagrangian for the THDM. We introduce
our notation for the Higgs potential, which is expressed in
terms of gauge invariant functions of the fields. In Sect. 4
we analyse the conditions for the stability of the poten-
tial. In Sect. 5 we derive expressions for the location of the
stationary points of the potential. The conditions derived
from spontaneous symmetry breaking of the electroweak
gauge group SU(2)L×U(1)Y down to the electromag-
netic gauge group U(1)em are given in Sect. 6. In Sect. 7
we specify the potential after EWSB in our notation.
Eventually, in Sect. 8 the results are applied to two spe-
cific models with two Higgs doublets, the MSSM and the
model of Gunion et al. [16, 17]. We present our conclusions
in Sect. 9.
In Appendix A and B we discuss the structure of the

space of gauge orbits for the THDM and for the gen-
eral model with arbitrary number of Higgs doublets,
respectively.

2 Motivations for an extended Higgs sector

Given the fact that theoretically the mechanism of EWSB
in the SM with one Higgs doublet is working well and that
experimentally not even one fundamental scalar particle is
discovered yet, what are the motivations to consider an ex-
tended Higgs sector? Some reasons are as follows.
A promising candidate for a theory that solves the

naturalness problem and has a higher symmetry than
the SM is the MSSM [8, 9]; for reviews, see e.g. [32, 33].
Also the MSSM contains fundamental Higgs fields that
are responsible for the generation of masses. As the mini-
mal supersymmetric extension of the SM, the MSSM has
two scalar Higgs doublets, being the minimum for an ana-
lytic superpotential and the absence of triangle anomalies.
An extended Higgs sector can improve gauge-coupling
unification at high scales [34]. In particular, supersymmet-
ric models allow the unification to occur at a sufficiently
high scale consistent with the non-observation of proton
decays [35–39]. We remark that supersymmetry imposes
many relations between the parameters of the potential
of the most general model with two doublets. Cosmol-
ogy provides an additional reason for a non-minimal Higgs
sector. The experimental lower bound on the Higgs bo-
son mass in the SM, mH > 114.4GeV, is too high for the
electroweak phase transition in the early universe to pro-
vide the thermal instability that is necessary for baryo-
genesis [40]; for a review see [41]. In this respect models
with additional scalar particles are more promising than
the SM [41]. Last but not least, given the large spectrum
of fermion masses and the fact that the fermion–scalar in-
teractions are responsible for their generation, the idea
does not seem too abstruse that several scalar particles are
involved in this mechanism. There are three known gener-
ations of fermions so why should there exist only one Higgs
boson?
A study of the general Higgs sector of a theory pos-

sessing the gauge group SU(3)C ×SU(2)L×U(1)Y was
presented in [42]. In the following the strong interaction
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gauge group SU(3)C will play no role, so we shall not
mention it further. In [42] the scalar fields, collectively
denoted by χ, are supposed to transform under a gen-
eral representation of the gauge group SU(2)L×U(1)Y .
Such a representation may be reducible and consists of
complex unitary and real orthogonal parts. However one
can show that without loss of generality it can be as-
sumed that χ carries a real orthogonal representation of
SU(2)L×U(1)Y [42]. For the THDM this correspondence
is demonstrated in Appendix B of [43]. The scalar potential
is then assumed in [42] to have a non-zero vacuum expecta-
tion value,

v≡ 〈0|χ|0〉 �= 0, (1)

and to leave the electromagnetic subgroup U(1)em un-
broken as usual. We use the boldface letter here in order
to signify that v is, like χ, in general a multi-component
vector. One can then compute particle masses and cou-
plings for arbitrary representations of scalars. However,
only some representations are allowed in order to be in
agreement with experimental data.
One main restriction originates from the observed high

suppression of flavour-changing neutral currents. A way to
ensure this in the theory is to require that all quarks of
a given charge receive their masses from the vacuum expec-
tation value of the same Higgs boson [44]. Since we analyse
only the scalar potential in this work and do not specify
the Yukawa interactions, we shall not discuss this condition
further here.
Very relevant for us here are the consequences for

the Higgs sector obtained from the accurately measured
ρ-parameter, which relates the masses of the W and
Z bosons,mW andmZ , to the weak mixing angle θW:

ρ≡

(
mW

cos θWmZ

)2
. (2)

Experimentally the ρ-parameter is very close to 1 [45], and
this suggests to require theoretically ρ = 1 at tree level.
This is indeed the case for the SM. For the most general
Higgs model as studied in [42] one finds the following.
It is convenient to extend the real representation car-

ried by the general Higgs field χ to a unitary representation
of the same (complex) dimension and to decompose it into
representations with definite values (t, y), where t and y
are the weak-isospin and weak-hypercharge quantum num-
bers, respectively. We have

t= 0,
1

2
, 1,
3

2
, . . . (3)

and, for reasons discussed in [42], suppose the hypercharge
quantum numbers y to be rational numbers. The normali-
sation is such that the charge, hypercharge and third com-
ponent of weak-isospin matrices are related by

Q= T3+Y . (4)

Then the squared gauge-boson masses (see (2.43) in [42])
are given by

m2W =
1

2

(
e

sin θW

)2∑
t,y

[
t(t+1)−y2

]
vTP(t, y)v,

(5)

m2Z =

(
e

sin θW cos θW

)2∑
t,y

y2 vTP(t, y)v , (6)

where P(t, y) is the projector on the subspace with repre-
sentation (t, y). Here, the positron charge e, and the sine
and cosine of the weak mixing angle are defined in terms
of the gauge couplings g and g′ as in the SM (see for
instance [46]):

sin θW =
g′√
g2+ g′2

, (7)

cos θW =
g√
g2+ g′2

, (8)

e= g sin θW , (9)

where we use the same notation as in [42]. It is shown in [42]
that

vTP(t, y)v �= 0 (10)

is only possible if

y ∈ {−t,−t+1, . . . , t}. (11)

Inserting the expressions formW andmZ in the defin-
ition (2) one obtains [42]

ρ=

∑
t,y[t(t+1)−y

2] vTP(t, y)v∑
t,y 2y

2 vTP(t, y)v
. (12)

To obtain ρ= 1 one can either fine-tune the parameters of
the potential in order to get the right vacuum expectation
values, which seems rather unnatural and is therefore not
considered here. Or one can only allow those representa-
tions in (5) and (6) that separately lead to ρ= 1. There are
infinitely many such representations [47], starting with the
doublet with t= 1/2 and y =±1/2, and the septuplet with
t= 3 and y = ±2. From each of these representations one
or more copies are allowed and one still gets ρ= 1. Further-
more, the singlet with y = 0 and all representations with

y /∈ {−t,−t+1, . . . , t} (13)

can occur because they do not contribute to the sums
in (12).
The simplest possibility to extend the Higgs sector of

the SM keeping ρ= 1 at tree level is, therefore, to allow for
more than one Higgs doublet. In these models the shape of
the scalar potential depends on many parameters and can
be quite complicated. As mentioned above it is the poten-
tial that is responsible for the scalar self-interactions and
– together with the interaction terms of the scalars with
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the respective particle – for the generation of the masses.
Therefore one is interested in the conditions that one has to
impose on these parameters in order to render the potential
stable and to guarantee spontaneous symmetry breaking
from SU(2)L×U(1)Y to U(1)em. In this paper we consider
two Higgs doublets; that is, the THDM. We remark that
after EWSB three degrees of freedom in the scalar sec-
tor reappear as longitudinal modes of the massive gauge-
bosons. All other degrees of freedom of the scalar sector
correspond to physical Higgs bosons, that is with each ad-
ditional doublet four (real) physical scalar degrees of free-
dom are added to the model. In the THDM, there are
altogether five physical Higgs particles: three neutral Higgs

bosons h0,H0 (where conventionallymh0 ≤mH0) andA
0,

as well as two charged Higgs bosonsH±. If the Higgs po-
tential is CP conserving the neutral mass eigenstates are
also CP eigenstates, where h0 andH0 are scalar bosons
and A0 is a pseudoscalar. There exist various studies of
the phenomenology of the THDM in the literature; for an
overview and further references see for instance [48].
For the MSSM a large number of Feynman rules involv-

ing Higgs bosons is derived in [49, 50]. The phenomenol-
ogy of the Higgs bosons in the MSSM is further developed
in [51–54]. We remark that in models that possess an ex-
tended Higgs sector (and may also contain further non-
SM particles) for certain regions of the parameter space
there often exists one neutral Higgs boson that behaves
similarly to the SM Higgs boson. For instance, the MSSM
Higgs sector is described by two parameters, which can
be chosen as the mass of the pseudoscalar bosonmA0 and
the ratio tanβ of the vacuum expectation values of the
two Higgs doublets. In the decoupling limit mA0 	mZ ,

where practicallymA0 � 200GeV is sufficient [55], one neu-
tral Higgs boson h0 is light and has the same couplings as
the SM Higgs boson, whereas the other Higgs bosons H0,

A0 andH± are heavy and decouple. If there exist light
supersymmetric particles that couple to h0 it may be com-
paratively easy to distinguish h0 from the SM Higgs boson
even if it has SM-like couplings; this is because h0 can
decay into the light supersymmetric particles if kinemati-
cally allowed. Further, if the light supersymmetric particles
couple to photons (gluons) the one-loop γγh0 (ggh0) coup-
ling is modified by their contribution to the loop, thus the
branching ratios of h0 differ from those of the SMHiggs bo-
son. If all heavy Higgs bosons are beyond kinematical reach
in the decoupling limit, such precision measurements are
the only way to distinguish h0 from the SM Higgs boson.
Notice that at an e+e− collider like the ILC [56–58] the
heavy Higgs states can only be produced pairwise in the de-
coupling limit, so that the kinematical limit may be very
crucial. However, at a γγ collider s-channel resonant H0

and A0 production [59] is possible, so that only the avail-
able c.m. energy of the γγ system limits the masses which
can be explored. In the γγ option of an ILC one expects
that the maximal useful γγ c.m. energy will be 80% of the
c.m. energy in the e+e− mode [60].
Present experiments give the following exclusion re-

gions for various versions of the THDM. The OPAL collab-
oration has performed a parameter scan for the CP con-

serving THDM [61] and excluded at 95%C.L. large parts of
the region where

1 GeV ≤mh0 ≤ 130GeV ,

3 GeV ≤mA0 ≤ 2 TeV ,

0.4≤ tanβ ≤ 40 ,

α=−
π

2
,−
π

4
, 0,
π

4
,
π

2
. (14)

Here α is a mixing angle for the two states h0 andH0. Fur-
ther, the approximate region where

1 GeV <mh0 < 55GeV ,

3 GeV <mA0 < 63GeV (15)

is excluded for all tanβ values for negative α. In a com-
bined analysis [62] of the four LEP collaborations a lower
bound on the mass of the charged Higgs in models with
two Higgs doublets like the THDM or the MSSM, we have
approximately

mH± > 78.6 GeV (16)

is determined. In another analysis [63] of the four LEP col-
laborations, signals for neutral Higgs bosons at different
benchmark points of theMSSMwere searched for. Here the
limits

mh0 > 91.0GeV ,

mA0 > 91.9GeV (17)

at 95% C.L. are obtained. Under the assumption that the
“left–right”–stop mixing is maximal and with conserva-
tive choices for other MSSM parameters the region 0.5<
tanβ < 2.4 is excluded at 95% C.L.

3 The general two-Higgs-doublet model

We denote the two complex Higgs-doublet fields by

ϕi(x) =

(
ϕ+i (x)

ϕ0i (x)

)
, (18)

with i = 1, 2. Hence we have eight real scalar degrees of
freedom. The most general SU(2)L×U(1)Y invariant La-
grangian for the THDM can be written as

LTHDM =Lϕ+LYuk+L′ , (19)

where the pure Higgs boson Lagrangian is given by

Lϕ =
∑
i=1,2

(Dµϕi)
†
(Dµϕi)−V (ϕ1, ϕ2) . (20)

This term replaces the kinetic terms of the Higgs boson and
the Higgs potential in the SM Lagrangian. The covariant
derivative is

Dµ = ∂µ+igW
a
µTa+ig

′BµY , (21)
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where Ta andY are the generating operators of the weak-
isospin and weak-hypercharge transformations. For the
Higgs doublets we have Ta = τa/2, where τa (a = 1, 2, 3)
are the Pauli matrices. We assume both doublets to have
weak hypercharge y = 1/2. Further, LYuk are the Yukawa-
interaction terms of the Higgs fields with fermions. Fi-
nally, L′ contains the terms of the Lagrangian without
Higgs fields. We do not specify LYuk and L′ here since
they are not relevant for our analysis. The Higgs poten-
tial V in the THDM will be specified below and discussed
extensively.
We remark that in the MSSM the two Higgs doublets

H1 andH2 carry hypercharges y =−1/2 and y =+1/2, re-
spectively, whereas here we use the conventional definition
of the THDM with both doublets carrying y =+1/2. How-
ever, our analysis can be translated to the other case, see
for example (3.1) in [49, 50], by setting

ϕα1 =−εαβ
(
Hβ1

)∗
,

ϕα2 =H
α
2 , (22)

where ε is given by

ε=

(
0 1
−1 0

)
. (23)

The most general gauge invariant and renormalisable
potential V (ϕ1, ϕ2) for the two Higgs doublets ϕ1 and ϕ2 is
a hermitian linear combination of the following terms:

ϕ†iϕj ,
(
ϕ†iϕj

)(
ϕ†kϕl

)
, (24)

where i, j, k, l ∈ {1, 2}. It is convenient to discuss the
properties of the potential such as its stability and its
spontaneous symmetry breaking in terms of gauge in-
variant expressions. For this purpose we arrange the
SU(2)L×U(1)Y invariant scalar products into the hermi-
tian 2×2 matrix

K :=

(
ϕ†1ϕ1 ϕ†2ϕ1

ϕ†1ϕ2 ϕ†2ϕ2

)
(25)

and consider its decomposition

Kij =
1

2

(
K0 δij+Ka σ

a
ij

)
, (26)

using the completeness of the Pauli matrices σa (a =
1, 2, 3), together with the unit matrix. The four real coef-
ficients defined by the decomposition (26) are given by

K0 = ϕ
†
iϕi , Ka =

(
ϕ†iϕj

)
σaij (a= 1, 2, 3) . (27)

Here and in the following summation over repeated indices
is understood. Using the inversion of (27),

ϕ†1ϕ1 = (K0+K3)/2 , ϕ†1ϕ2 = (K1+iK2)/2 ,

ϕ†2ϕ2 = (K0−K3)/2 , ϕ†2ϕ1 = (K1− iK2)/2 ,
(28)

the most general potential can be written as follows:

V (ϕ1, ϕ2) = V2+V4 , (29a)

V2 = ξ0K0+ ξa Ka , (29b)

V4 = η00K
2
0 +2K0ηa Ka+KaηabKb , (29c)

where the 14 independent parameters ξ0, ξa, η00, ηa and
ηab = ηba are real. We subsequently write K := (Ka), ξ :=
(ξa), η := (ηa) and E := (ηab).
Now we consider a change of basis of the Higgs fields,

ϕi→ ϕ′i, where(
ϕ′1
ϕ′2

)
=

(
U11 U12
U21 U22

)(
ϕ1
ϕ2

)
. (30)

Here

U =

(
U11 U12
U21 U22

)
(U†U = 1I) (31)

is a 2×2 unitary transformation. With (30) the gauge in-
variant functions (27) transform as

K ′0 =K0 , K ′a =Rab(U)Kb , (32)

where Rab(U) is defined by

U†σa U =Rab(U)σ
b . (33)

The matrix R(U) has the properties

R∗(U) =R(U) , RT(U)R(U) = 1I , detR(U) = 1 ,
(34)

where 1I denotes the 3× 3 unit matrix. That is, R(U) ∈
SO(3). The form of the Higgs potential (29) remains un-
changed under the replacement (32) if we perform an ap-
propriate transformation of the parameters

ξ′0 = ξ0 , ξ
′ =R(U) ξ ,

η′00 = η00 , η
′ =R(U)η ,

E′ =R(U)ERT(U) . (35)

Moreover, for every matrix R with the properties (34),
there is a unitary transformation (30). We can therefore di-
agonaliseE, thereby reducing the number of parameters
of V by three. The Higgs potential is then determined by
only 11 real parameters.
The matrixK is positive semi-definite, which follows

immediately from its definition (25). With K0 = trK and
K20 −K

2 = 4detK this implies

K0 ≥ 0 , K20 −K
2 ≥ 0 . (36)

On the other hand, for any given K0,K fulfilling (36), it
is possible to find fields ϕi obeying (27). Furthermore, all
fields obeying (27) for a givenK0,K form one gauge orbit.
This is shown explicitly in Appendix A.
Thus, the functionsK0,Ka parametrise the gauge or-

bits and not a unique Higgs-field configuration. Specifying
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the domain of the functionsK0,Ka corresponding to the
gauge orbits allows one to discuss the potential directly in
the form (29) with all gauge degrees of freedom eliminated.
It is curious to note that the gauge orbits of the Higgs fields
of the THDM are parametrised by Minkowski-type four
vectors (K0,K) which have to lie on or inside the forward
light cone.
In the following sections we derive bounds on the pa-

rameters of the potential that result from the conditions
that

– the potential V is stable,
– we have spontaneous symmetry breaking of SU(2)L×
U(1)Y down to U(1)em .

4 Stability

According to Sect. 3 we can analyse the properties of the
potential (29) as a function ofK0 andK on the domain de-
termined byK0 ≥ 0 andK20 ≥K

2. ForK0 > 0 we define

k :=K/K0 . (37)

In fact, we have K0 = 0 only for ϕ1 = ϕ2 = 0, and the po-
tential is V = 0 in this case. From (29) and (37) we obtain
forK0 > 0

V2 =K0 J2(k), J2(k) := ξ0+ξ
Tk , (38)

V4 =K
2
0 J4(k) , J4(k) := η00+2η

Tk+kTEk , (39)

where we introduce the functions J2(k) and J4(k) on the
domain |k| ≤ 1.
For the potential to be stable, it must be bounded from

below. The stability is determined by the behaviour of V in
the limit K0→∞; hence by the signs of J4(k) and J2(k)
in (38) and (39). For the theory to be at least marginally
stable

J4(k)> 0 or

J4(k) = 0 and J2(k)≥ 0

}
for all |k| ≤ 1 (40)

is necessary and sufficient, since this condition is equivalent
to V ≥ 0 forK0→∞ in all possible directions k. The more
robust stability property V →∞ for K0→∞ and any k
can either be guaranteed by

J4(k)> 0 or

J4(k) = 0 and J2(k)> 0

}
for all |k| ≤ 1 (41)

in a weak sense, or by

J4(k)> 0 for all |k| ≤ 1 , (42)

in a strong sense; that is, by the quartic terms of V solely.
To assure J4(k) is positive (semi-) definite, it is suffi-

cient to consider its value for all stationary points of J4(k)
on the domain |k| < 1, and for all stationary points on the
boundary |k|= 1. This holds, because the global minimum
of the continuous function J4(k) is reached on the compact

domain |k| ≤ 1, and it is among those stationary points.
This leads to bounds on η00, ηa and ηab, which parametrise
the quartic term V4 of the potential. For |k|< 1 the station-
ary points – if there are any – must fulfil

Ek=−η with |k|< 1 . (43)

If detE �= 0 we explicitly obtain

J4(k)|stat = η00−η
TE−1η if 1−ηTE−2η > 0 , (44)

where the inequality follows from the condition |k|< 1. If
detE = 0 there can exist one or more “exceptional” so-
lutions k of (43). They, again, have to obey |k| < 1. For
|k|= 1 we must find the stationary points of the function

F4(k, u) := J4(k)+u
(
1−k2

)
, (45)

where u is a Lagrange multiplier. Those are given by

(E−u)k=−η with |k|= 1 . (46)

For regular values of u such that det(E−u) �= 0 the sta-
tionary points are given by

k(u) =−(E−u)−1η , (47)

and the Lagrange multiplier is determined from the condi-
tion kTk= 1 after inserting (47):

1−ηT(E−u)−2η = 0 . (48)

We thus obtain the solution

J4(k)|stat = u+η00−η
T(E−u)−1η , (49)

where u is a solution of (48). Also for |k|= 1, depending on
the parameters ηa and ηab, there can be exceptional solu-
tions (k, u) of (46) where det(E−u) = 0, i.e. where u is an
eigenvalue of E.
The regular solutions for the two cases |k| < 1 and

|k|= 1 can be described using one function only. Consider-
ing (45) and (47), we define

f(u) := F4(k(u), u) , (50)

with k(u) as in (47). This leads to

f(u) = u+η00−η
T(E−u)−1η , (51)

f ′(u) = 1−ηT(E−u)−2η , (52)

so that for all “regular” stationary points k of J4(k)

f(u) = J4(k)|stat , (53)

f ′(u) = 1−k2 (54)

holds, where we set u = 0 for the solution with |k| < 1.
There are stationary points of J4(k) with |k|< 1 and |k|=
1 exactly if f ′(0) > 0 and f ′(u) = 0, respectively, and the
value of J4(k) is then given by f(u).
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In a basis where E = diag(µ1, µ2, µ3) we obtain

f(u) = u+η00−
3∑
a=1

η2a
µa−u

, (55)

f ′(u) = 1−
3∑
a=1

η2a
(µa−u)2

. (56)

The derivative f ′(u) has at most six zeros. The shape of
f(u) and f ′(u) for a (purely didactical) set of parameters
where f ′(u) has six zeros can be seen in Fig. 1. Notice that
there are no exceptional solutions if in this basis all three
components of η are different from zero.
The function f(u) given by (51) allows us to discuss also

the exceptional solutions of (43) and (46). Consider first
|k|< 1 and suppose that detE = 0. In the basis where E is
diagonal we have

detE = µ1 µ2 µ3 = 0 , (57)

and (43) reads

µ1 k1 =−η1 ,

µ2 k2 =−η2 ,

µ3 k3 =−η3 . (58)

Clearly, a solution of (58) is only possible if with µa = 0
also ηa = 0 (a = 1, 2, 3). Therefore, we see from (55) that

Fig. 1. The stability determining functions f ′(u) and f(u)
as given by (56) and (55) with η00 = 0.05, (µ1, µ2, µ3) =
(0.01, 0.02, 0.03) and (η1, η2, η3) = (0.002, 0.002, 0.002)

exceptional solutions with |k| < 1 are only possible if f(u)
stays finite at u= 0. That is, the pole which would corres-
pond to µa = 0 must have residue zero. Suppose now that
indeed ηa = 0 for all a where µa = 0. Take as an example
µ1 = µ2 = 0 and η1 = η2 = 0, but µ3 �= 0. Then we get the
general solution of (58) as follows:

k3 =−
η3

µ3
, (59)

with k1, k2 arbitrary but satisfying

k2 = k21+k
2
2+

(
η3

µ3

)2
< 1 . (60)

We can write this as

k= k‖+k⊥ , (61)

where

k‖ =−
1

µ3
η , E k⊥ = 0 ,

k2⊥ < 1−k
2
‖ = 1−

(
η3

µ3

)2
. (62)

For the functions (55) and (56) we get here

f(u) = u+η00−
η23
µ3−u

, (63)

f ′(u) = 1−
η23

(µ3−u)2
. (64)

Inserting the solution k from (61) and (62) in J4(k) we get

f(0) = J4(k)|stat , (65)

f ′(0) = 1−k2‖ > k
2
⊥ ≥ 0 . (66)

Clearly these arguments work similarly, if only one of the
µa is equal to zero or all three µa are zero. In all cases (65)
holds for the exceptional points with |k| < 1, which can
exist only if f(u) has no pole at u= 0. Since (65) involves
only “scalar” quantities, it holds in any basis.
The case of exceptional solutions for |k| = 1 can be

treated in an analogous way. An exceptional solution
of (46) with u= µa (a= 1, 2, 3) can only exist if the corres-
ponding ηa = 0. Then f(u) has no pole for u= µa and the
exceptional solutions of (46) fulfil

k= k‖+k⊥ , (67)

with

k‖ =− (E−u)
−1η
∣∣
u=µa

, (E−µa)k⊥ = 0

and

f(µa) = J4(k)|stat , (68)

f ′(µa) = 1−k
2
‖ = k

2
⊥ ≥ 0 . (69)
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Note that if a solution is possible, k⊥ may be any linear
combination of the eigenvectors to the eigenvalue µa of E,

where the norm is given by |k⊥|=
√
f ′(µa). Thus we see

that the function f(u) is very useful for discussing the sta-
bility of the THDM potential. What we have shown so far
can be formulated as follows.
Consider the functions f(u) and f ′(u). Denote by I,

I = {u1, . . . , un} , (70)

the following set of values of u. Include in I all u where
f ′(u) = 0. Add u = 0 to I if f ′(0) > 0. Consider then the
eigenvalues µa (a= 1, 2, 3) of E. Add those µa to I where
f(µa) is finite and f

′(µa)≥ 0. We have n≤ 10. The values
of the function J4(k) at its stationary points are given by

J4(k)|stat = f(ui) , (71)

with ui ∈ I. The potential is stable if f(ui) > 0 for all
ui ∈ I. Then the stability is given solely by the quartic
terms in the potential. The potential is unstable if we have
f(ui)< 0 for at least one ui ∈ I. If we have f(ui)≥ 0 for all
ui ∈ I and f(ui) = 0 for at least one ui ∈ I, we have to con-
sider in addition J2(k) in order to decide on the stability of
the potential.
We turn now to this latter case. We shall show that we

have then to consider in addition the function

g(u) := ξ0−ξ
T(E−u)−1η . (72)

For the stationary points of J4(k) with

J4(k)|stat = f(ui) = 0 . (73)

We have for the vectors k satisfying (73)

J2(k) = g(ui) , (74)

if ui �= µa; that is, ui is not an eigenvalue of E. If ui is
an eigenvalue of E; that is, ui = µa ∈ I, and el(ui) (l =
1, . . . , N) are the N ≤ 3 eigenvectors to ui, then we have

inf
k
J2(k) = g(ui)−|ξ⊥(ui)|

√
f ′(ui) , (75)

where the infimum is taken over all exceptional solutions k
to ui and

ξ⊥(ui) :=
N∑
l=1

ξel(ui)

|el(ui)|2
el(ui) . (76)

We summarise our findings in a theorem.

Theorem 1. The most general potential of the two-Higgs-
doublet model has the form (29). Its stability is decided in
the following way. If the potential has only the quadratic
term V2, it is stable for ξ0 > |ξ|, marginally stable for ξ0 =
|ξ| and unstable for ξ0 < |ξ|. Suppose now that V4 �≡ 0. We
construct then the functions f(u) of (51), f ′(u) of (52) and
g(u) of (72), and the set I (70) of (at most 10 ) u values.

1. If f(ui) > 0 for all ui ∈ I, the potential is stable in the
strong sense (42).

2. If f(ui)< 0 for at least one ui ∈ I, the potential is unsta-
ble.

3. If f(ui) ≥ 0 for all ui ∈ I and f(ui) = 0 for at least one
ui ∈ I, we consider also the function g(u) (72). The po-
tential is stable in the weak sense (41) if for all ui ∈ I
where f(ui) = 0 the following holds (see (74) to (76)):

g(ui)> 0 if ui �= µa , (77)

g(ui)−|ξ⊥(ui)|
√
f ′(ui)> 0 if ui = µa . (78)

If in some or all of these cases we have= 0 instead of> 0
we have marginal stability (40). If in at least one case we
have < 0 instead of > 0, the potential is unstable.

Our theorem gives a complete characterisation of the
stability properties of the general THDM potential. In
the following subsection we apply the theorem to assert
that the strong stability condition (42) holds for a specific
potential. An application for the weaker stability condi-
tion (41) is given in Sect. 8.1.

4.1 Stability for THDM of Gunion et al.

We consider the THDM of [16, 17] with the Higgs potential

V (ϕ1, ϕ2) = λ1
(
ϕ†1ϕ1− v

2
1

)2
+λ2
(
ϕ†2ϕ2− v

2
2

)2
+λ3

(
ϕ†1ϕ1− v

2
1+ϕ

†
2ϕ2− v

2
2

)2
+λ4

((
ϕ†1ϕ1

)(
ϕ†2ϕ2

)
−
(
ϕ†1ϕ2

)(
ϕ†2ϕ1

))

+λ5
(
Re
(
ϕ†1ϕ2

)
− v1v2 cos ξ

)2

+λ6

(
Im
(
ϕ†1ϕ2

)
− v1v2 sin ξ

)2
+λ7

(
Re
(
ϕ†1ϕ2

)
− v1v2 cos ξ

)

×
(
Im
(
ϕ†1ϕ2

)
− v1v2 sin ξ

)
, (79)

which contains nine real parameters if we do not count the
constant. This potential breaks the discrete symmetry

ϕ1 −→−ϕ1 , ϕ2 −→ ϕ2 (80)

only softly, i.e. by V2 terms, thus suppressing large flavour-
changing neutral currents. For various restrictions on the
THDM by symmetries see for instance [48]. Dropping the
constant term, we put the potential into the form (29)
using the relations (28). Then,

η00 =
1

4
(λ1+λ2+4λ3+λ4) ,

η =
1

4

⎛
⎝ 0

0
λ1−λ2

⎞
⎠ ,

E =
1

8

⎛
⎝2(λ5−λ4) λ7 0

λ7 2(λ6−λ4) 0
0 0 2(λ1+λ2−λ4)

⎞
⎠ .
(81)
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From (51) and (52) we obtain

f(u) = u+
1

4
(λ1+λ2+4λ3+λ4)

−
(λ1−λ2)

2

4(λ1+λ2−λ4−4u)
,

f ′(u) = 1−
(λ1−λ2)

2

(λ1+λ2−λ4−4u)
2 . (82)

We introduce the abbreviation

κ :=
1

2

(
λ5+λ6−

√
(λ5−λ6)2+λ27

)
. (83)

Applying theorem 1 to the functions f(u) and f ′(u), we
find the strong stability assertion by V4, see (42), to be
equivalent to the simultaneous conditions

λ1+λ3 > 0 , λ2+λ3 > 0 , (84)

λ4, κ >−2λ3−2
√
(λ1+λ3)(λ2+λ3) . (85)

In particular, if λ1, λ2, λ3, λ4, κ > 0 these inequalities are
fulfilled. They can then be rewritten as

λ1, λ2, λ3, λ4 > 0, 4λ5λ6 > λ
2
7 . (86)

That means, if (86) holds, that the conditions (84) are
fulfilled and the potential is stable. For the case λ7 = 0
we can replace κ by min(λ5, λ6) in the stability condi-
tions (84), which are then in particular fulfilled if λi > 0 for
i= 1, . . . , 6.
The potential in [13] is even more specific, since it is

invariant under (80). Inserting their potential parameters
in (84) we reproduce the result of [13], their equation (2).

5 Location of stationary points

After our stability analysis in the preceding section we now
determine the location of the stationary points of the po-
tential, since among these points there are the local and
global minima. To this end we define

K̃=

(
K0
K

)
, ξ̃ =

(
ξ0
ξ

)
, Ẽ =

(
η00 η

T

η E

)
. (87)

In this notation the potential (29) reads

V = K̃Tξ̃+ K̃TẼK̃ (88)

and is defined on the domain

K̃Tg̃K̃≥ 0 , K0 ≥ 0 , (89)

with

g̃ =

(
1 0
0 −1I

)
. (90)

For the discussion of the stationary points of V , we distin-
guish the allowed cases K̃= 0,K0 > |K| andK0 = |K|> 0.

The trivial configuration K̃= 0 is a stationary point of
the potential with V = 0, as a direct consequence of the
definitions.
The stationary points of V in the inner part of the do-

main,K0 > |K|, are given by

ẼK̃=−
1

2
ξ̃ with K̃Tg̃K̃> 0 and K0 > 0 . (91)

For det Ẽ �= 0 we obtain the unique solution

K̃=−
1

2
Ẽ−1ξ̃ , (92)

provided that

ξ̃TẼ−1g̃Ẽ−1ξ̃ > 0 and K0 > 0 , (93)

and no solution if (93) does not hold. The Hessian matrix

(
∂2

∂Ki ∂Kj
V

)
= 2Ẽ, where i, j = 0 . . . 3 , (94)

determines whether (92) is a local minimum, a local max-
imum or a saddle. In the case det Ẽ = 0 we may have excep-
tional solutions of (91). In the regular case as well as in the
exceptional cases, the existence of a solution of (91) along
with the corresponding values of the potential are not af-
fected by the transformation of parameters (35).
The stationary points of V on the domain boundary

K0 = |K|> 0 are stationary points of the function

F̃
(
K̃, u
)
:= V −uK̃Tg̃K̃ , (95)

where u is a Lagrange multiplier. The relevant stationary
points of F̃ are given by

(
Ẽ−ug̃

)
K̃=−

1

2
ξ̃ with K̃Tg̃K̃= 0 andK0 > 0 . (96)

For regular values of u with det(Ẽ−ug̃) �= 0 we obtain

K̃(u) =−
1

2

(
Ẽ−ug̃

)−1
ξ̃ . (97)

The Lagrange multiplier is determined from the con-
straints in (96) by inserting (97):

ξ̃T
(
Ẽ−ug̃

)−1
g̃
(
Ẽ−ug̃

)−1
ξ̃ = 0 and K0 > 0 . (98)

There may be up to four values u= µ̃a with a= 1, . . . , 4 for
which det(Ẽ−ug̃) = 0. Depending on the potential some or
all of them may lead to exceptional solutions of (96). Note
that for the regular as well as for the exceptional cases,
the Lagrange multipliers u and the value of the potential
belonging to solutions (u, K̃) of (96) are, similar to above,
invariant under the transformations (35).
For any stationary point the potential is given by

V |stat =
1

2
K̃Tξ̃ =−K̃TẼK̃ . (99)



814 M. Maniatis et al.: Stability and symmetry breaking in the general two-Higgs-doublet model

Suppose now that the weak stability condition (41) holds.
Then (99) gives for non-trivial stationary points where
K̃ �= 0:

V |stat < 0 , (100)

since the cases V4 < 0 and V4 = V2 = 0 are excluded by the
stability condition.
Similarly to the stability analysis in Sect. 4 we can use

a unified description for the regular stationary points of V
with K0 > 0 for both |K|<K0 and |K|=K0 defining the
function

f̃(u) := F̃
(
K̃(u), u

)
, (101)

where K̃(u) is the solution (97). It follows that

f̃(u) =−
1

4
ξ̃T
(
Ẽ−ug̃

)−1
ξ̃ , (102)

f̃ ′(u) =−
1

4
ξ̃T
(
Ẽ−ug̃

)−1
g̃
(
Ẽ−ug̃

)−1
ξ̃ . (103)

Denoting the first component of K̃(u) as K0(u) we sum-
marise as follows.

Theorem 2. The stationary points of the potential are
given by

(I a) K̃= K̃(0) if f̃ ′(0)< 0,K0(0)> 0 and det Ẽ �= 0,
(I b) solutions K̃ of (91) if det Ẽ = 0,
(II a) K̃= K̃(u) for u with det(Ẽ−ug̃) �= 0, f̃ ′(u) = 0 and

K0(u)> 0,
(II b) solutions K̃ of (96) for u with det(Ẽ−ug̃) = 0,
(III ) K̃ = 0.

In many cases, for instance if all values µ̃1, . . . , µ̃4 are
different, we can diagonalise the in general non-hermitian
matrix g̃Ẽ in the following way:

g̃Ẽ =
4∑
a=1

µ̃aP̃a . (104)

Here the P̃a are quasi-projectors constructed from the nor-
malised right and left eigenvectors χa, χ̃a of g̃Ẽ. We have
then g̃Ẽ χa = µ̃a χa, χ̃a g̃Ẽ = χ̃a µ̃a, χ̃aχb = δa b and can
impose as additional normalisation condition χ†aχa = 1.
The P̃a are given by

P̃a = χaχ̃a (105)

and satisfy

tr P̃a = 1, P̃aP̃b =

{
P̃a for a= b ,

0 for a �= b ,
(106)

where a, b ∈ {1, . . . , 4}. In terms of the P̃a (102) and (103)
read

f̃(u) =−
1

4

4∑
a=1

ξ̃TP̃a g̃ ξ̃

µ̃a−u
, (107)

f̃ ′(u) =−
1

4

4∑
a=1

ξ̃TP̃a g̃ ξ̃

(µ̃a−u)2
. (108)

Of course, f̃(u) in (102) is always a meromorphic function
of u, but in general poles of higher order than one may also
occur.

6 Criteria for electroweak symmetry breaking

The global minimum will be among the stationary points
discussed in the previous section. Here we discuss the
spontaneous symmetry-breaking features of the possible
classes of minima and give criteria to ensure a global min-
imum with the required electroweak symmetry breaking
SU(2)L×U(1)Y → U(1)em.

A global minimum at K̃= 0 means vanishing fields for
the vacuum. In this case, no symmetry is spontaneously
broken. If the global minimum lies at K̃ �= 0, the full gauge
group or a subgroup is broken. We denote the vacuum ex-
pectation values, i.e. the fields at the global minimum of
the potential V , by

v+i := 〈ϕ
+
i 〉 , v0i := 〈ϕ

0
i 〉 , (109)

with i= 1, 2. In general the v+i , v
0
i are complex numbers. To

exhibit the consequences of electromagnetic gauge invari-
ance we consider the matrix (25) at the global minimum,
K|min.
If the global minimum of V occurs withK0 > |K|, it fol-

lows that detK|min > 0; see Sect. 3. Since we have

detK|min =
∣∣v+1 v02− v01 v+2 ∣∣2 , (110)

the vectors (
v+1

v+2

)
,

(
v01
v02

)
(111)

are linearly independent. Then there is no transform-
ation (30) such that both v+1 and v

+
2 become zero. This

means that the full gauge group SU(2)L×U(1)Y is bro-
ken. We can also show this using the methods explained in
Appendix A; see (A.23).
In the case that the global minimum of V features

K0 = |K| > 0, the rank of the matrix K|min is 1 and the
vectors (111) are linearly dependent. After performing a
SU(2)L×U(1)Y transformation we achieve

(
v+1

v+2

)
= 0 , (112)

(
v01
v02

)
=

(
|v01|

|v02| e
iζ

)
�= 0, ζ ∈ R , (113)

and we identify the unbroken U(1) gauge group with the
electromagnetic one. By a transformation (30), namely

(
ϕ′1
ϕ′2

)
=

(
cosβ sinβ e−iζ

− sinβ eiζ cosβ

)(
ϕ1
ϕ2

)
, (114)
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with β fulfilling |v01| sinβ = |v
0
2| cosβ, we can arrange that

(
v′+1

v′+2

)
= 0 , (115)

(
v′01
v′02

)
=

(
v0/
√
2

0

)
, v0 > 0 . (116)

This can also be derived from the results in Appendix A;
see (A.16) et seq. In (116) v0 is the usualHiggs-field vacuum
expectation value, v0 ≈ 246GeV (see for instance [46]).
Now, we want to derive conditions for the parameters

in the general potential (29), which lead to the required
EWSB by a global minimum with K0 = |K| > 0. In the
following, we assume the potential to be stable. If we con-
sider parameters fulfilling ξ0 ≥ |ξ| this immediately implies
J2(k)≥ 0 and hence from (41) V > 0 for all K̃ �= 0. There-
fore for these parameters the global minimum is at K̃= 0.
Thus we arrive at the requirement

ξ0 < |ξ| . (117)

Here we obtain

∂V

∂K0

∣∣∣∣k fixed,
K0=0

= ξ0+ξ
Tk< 0 (118)

for some k, i.e. the global minimum of V lies at K̃ �= 0.
Addressing the non-trivial cases, suppose that the two

points

p̃=

(
p0
p

)
, q̃=

(
q0
q

)
, (119)

with p0 ≥ |p| and q0 ≥ |q| are stationary points of V ; that
is, each of them is either a solution of (91), or, together with
an appropriate Lagrange multiplier up or uq for p̃ or q̃, re-
spectively, a solution of (96).
Firstly, consider p0 = |p|. From (88) and (96) we have

∂V

∂K0

∣∣∣∣K fixed,
K̃=p̃

= ξ0+2(Ẽ p̃)0 = 2up p0 . (120)

If up < 0, there are points K̃withK0 > p0,K= p and lower
potential in the neighbourhood of p̃, which therefore can-
not be a minimum. We conclude that in a theory with the
required EWSB the global minimum (which needs to be on
the light cone) must have a Lagrange multiplier u0 ≥ 0. As
we shall show in Sect. 7, the case u0 = 0 leads to zero mass
for the physical charged Higgs field at tree level. This is
unacceptable from a phenomenological point of view if we
disregard the possibility of very large radiative corrections.
Therefore, we find as condition for an acceptable theory

u0 > 0 (121)

for the Lagrange multiplier u0 of the global minimum. Sec-
ondly, for p0 = |p| and q0 = |q| we have from (99) and (96)

V (p̃)−V (q̃) =
1

2
p̃Tξ̃−

1

2
q̃Tξ̃

= p̃T(uq g̃− Ẽ)q̃− q̃
T(up g̃− Ẽ)p̃

= (uq−up) p̃
Tg̃q̃ . (122)

Since p̃ and q̃ are vectors on the forward light cone, p̃Tg̃q̃
is always non-negative and zero only for p̃ parallel to q̃.
Furthermore, the case that two different p̃, q̃ are parallel
cannot occur, since then (122) requires V (p̃) = V (q̃), while
(99) and (100) imply V (p̃) �= V (q̃) for that case. Therefore
we conclude

up > uq⇐⇒ V (p̃)< V (q̃) . (123)

Assuming p0 = |p| and q0 > |q| we get from (99) and
(91)

V (p̃)−V (q̃) =−up p̃
Tg̃q̃ (124)

and

V (p̃)−V (q̃) = (p̃− q̃)T Ẽ (p̃− q̃) . (125)

The first equation implies in particular that a stationary
point on the domain boundary with positive Lagrangemul-
tiplier will have a lower potential than any stationary point
withK0 >K. From the second equation follows in this case
that Ẽ has a negative eigenvalue. Since for the station-
ary point q̃ in the interior of the light cone the Hessian
matrix is 2Ẽ (see (94)), we see that q̃ cannot be a local
minimum. This result and the hierarchies of the station-
ary points derived above agree with [20]. We summarise as
follows.

Theorem 3. A global minimum with the spontaneous
electroweak symmetry breaking SU(2)L×U(1)Y → U(1)em
and absence of zero mass physical charged Higgs bosons

(I ) requires ξ0 < |ξ|,
(II ) is given and guaranteed by the stationary point of the

classes (IIa) or (IIb) of theorem 2 with the largest La-
grange multiplier u0 > 0.

We remark that for two different stationary points in
the inner part of the domain or with u= 0 on its boundary,
any linear combination of them with K0 ≥ |K| is a sta-
tionary point as well. These points therefore belong to one
connected set of degenerate stationary points. Stability re-
quires that this set contains points with K0 > |K| and is
bounded by points with K0 = |K|. If interpreted geometri-
cally, this degenerate set is a line segment, ellipsoidal area
or volume. Together with the arguments above we find the
following mutually exclusive possibilities for local minima,
expressed in terms of the gauge invariant functions: one or
multiple solutions with the required EWSB (K0 = |K|) or
the aforementioned degenerate set of solutions (K0 ≥ |K|)
or one charge breaking solution (K0 > |K|) or the trivial
solution (K̃= 0).
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7 Potential after electroweak symmetry
breaking

We assume a stable potential which leads to the desired
symmetry-breaking pattern as discussed in the previous
sections and derive consequences for the resulting physical
fields in the following. We choose a unitary gauge and the
basis for the scalar fields such that for the vacuum expecta-
tion values relations (115) and (116) hold, and furthermore
the fields satisfy

ϕ+1 (x) = 0 , (126)

Imϕ01(x) = 0 , (127)

Reϕ01(x)≥ 0 . (128)

We introduce as usual a shifted Higgs field

ρ′(x) :=
√
2 Reϕ01(x)− v0 . (129)

Then the two Higgs doublets are

ϕ1(x) =
1
√
2

(
0

v0+ρ
′(x)

)
, ϕ2(x) =

(
ϕ+2 (x)

ϕ02(x)

)
. (130)

In addition to ρ′ there are two more neutral Higgs fields:

h′ :=
√
2 Reϕ02, h′′ :=

√
2 Imϕ02 , (131)

and the charged fields

H+ := ϕ+2 , H− :=
(
H+
)∗
. (132)

It is convenient to decompose K̃ according to the power of
the physical fields they contain:

K̃= K̃{0}+ K̃{1}+ K̃{2} , (133)

with

K̃{0} =

⎛
⎜⎝
v20/2
0
0
v20/2

⎞
⎟⎠ , K̃{1} = v0

⎛
⎜⎜⎝
ρ′

h′0
h′′0
ρ′

⎞
⎟⎟⎠ , (134)

K̃{2} =
1

2

⎛
⎜⎜⎝
ρ′ 2+2H−H++h

′ 2+h′′ 2

2ρ′h′

2ρ′h′′

ρ′ 2−2H−H+−h′ 2−h′′ 2

⎞
⎟⎟⎠ . (135)

By u0 we denote again the Lagrangemultiplier correspond-
ing to the global minimum of V . From (96) we have

ẼK̃{0} = u0 g̃K̃{0}−
1

2
ξ̃ . (136)

From the explicit expressions (134) and (135) we further
have

K̃T{0} g̃ K̃{0} = 0 , K̃
T
{0} g̃ K̃{1} = 0 . (137)

Using (133) to (137) we obtain for the potential (88)

V = V{0}+V{2}+V{3}+V{4} , (138)

where V{k} are the terms of kth order in the physical Higgs
fields

V{0} = (ξ0+ ξ3) v
2
0/4 , (139)

V{2} = K̃
T
{1} Ẽ K̃{1}+2 u0 K̃

T
{0} g̃ K̃{2} , (140)

V{3} = 2 K̃
T
{1} Ẽ K̃{2} , (141)

V{4} = K̃
T
{2} Ẽ K̃{2} . (142)

The second order terms (140) determine the masses of the
physical Higgs fields:

V{2} =
1

2
(ρ′, h′, h′′)M2

neutral

⎛
⎝ρ

′

h′

h′′

⎞
⎠+m2H±H+H− (143)

with

M2
neutral = 2

⎛
⎝−ξ0− ξ3 −ξ1 −ξ2
−ξ1 v20 (u0+η11) v20 η12
−ξ2 v20 η12 v20 (u0+η22)

⎞
⎠ ,
(144)

m2H± = 2 u0 v
2
0 . (145)

Note that the condition u0 > 0 corresponds to the positiv-
ity of the charged Higgs mass squared at tree level. This re-
sult was alreadymentioned in Sect. 6. Generically the mass
terms (143) contain seven real parameters. From (144)
and (145) we see that all seven parameters are in general
independent in this model.

8 Examples

Here weapply thegeneral considerations of Sect. 4 to Sect. 7
to specific models.

8.1 MSSM Higgs potential

In this subsection, we consider the MSSM Higgs poten-
tial and reproduce the well-known results for its stability,
symmetry breaking and mass spectrum (see e.g. [33] and
references therein), employing the method described in the
previous sections. In the notation of [64] the MSSM Higgs
potential is

V = VD+VF +Vsoft , (146)

with

VD =
1

8
(g2+ g′2)

(
H†1H1−H

†
2H2

)2
+
1

2
g2
∣∣∣H†1H2

∣∣∣ 2 ,
VF = |µ|

2
(
H†1H1+H

†
2H2

)
,

Vsoft =m
2
H1
H†1H1+m

2
H2
H†2H2−

(
m23H

T
1 εH2+h.c.

)
,

(147)
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where H1 and H2 are Higgs doublets with weak hyper-
charges y =−1/2 and y =+1/2, respectively,m2H1 ,m

2
H2
∈

R,m23 ∈C and |µ|
2 ∈R+0 are parameters of dimension mass

squared. Substituting H1 and H2 by doublets ϕ1, ϕ2 with
the same weak hypercharge y=+1/2 according to (22) and
using the relations (28), we can put the potential in the
form (29). The parameters are

η00 =
1

8
g2 , η =

⎛
⎝00
0

⎞
⎠ , E = 1

8

⎛
⎝−g

2 0 0
0 −g2 0
0 0 g′2

⎞
⎠
(148)

for V4 = VD and

ξ0 = |µ|
2+
1

2

(
m2H1 +m

2
H2

)
, ξ =

⎛
⎜⎝

−Re (m23),

Im (m23),

1
2

(
m2H1−m

2
H2

)
⎞
⎟⎠
(149)

for V2 = VF +Vsoft.
We determine the stability of the potential by employ-

ing theorem 1. The functions f(u) (51) and f ′(u) (52) for
the MSSM are

f(u) = u+
1

8
g2 , (150)

f ′(u) = 1 . (151)

The set I (70) is given here by u= 0 and the eigenvalues of
E (148),

I =

{
u1 = 0 , u2 =−

1

8
g2 , u3 =

1

8
g′2
}
. (152)

We find for the stationary points of J4 with ui = u1, u3
the values J4(k)|stat = f(ui) > 0 but for those with u2
the value J4(k)|stat = f(u2) = 0. Explicitly, the stationary
points of J4 with u2 are

k= (cosφ, sinφ, 0)T , φ ∈ R , with J4(k) = 0 . (153)

They are known as the “D-flat” directions, since they have
VD = 0. For the MSSM, they prevent the stability assertion
by the quartic terms alone. For the stability to be guar-
anteed by V2 > 0 in these directions, theorem 1 gives as
condition (see (78) and (72)) the inequality

g(u2)−|ξ⊥(u2)|
√
f ′(u2) = ξ0−

√
ξ21 + ξ

2
2 > 0 . (154)

Inserting (149) we get

∣∣m23∣∣< |µ| 2+ 12
(
m2H1+m

2
H2

)
(155)

as the necessary and sufficient condition for the stability of
the MSSM potential in the sense of (41).
For the global minimum to be non-trivial, criterion (I)

of theorem 3 gives ξ0 <
√
ξ21 + ξ

2
2+ ξ

2
3, or equivalently

|µ| 2+
1

2

(
m2H1 +m

2
H2

)
<

√
|m23|

2
+
1

4

(
m2H1−m

2
H2

)2
(156)

as a necessary and sufficient condition. We consider the
acceptable global minimum candidates given by the clas-
ses (IIa) and (IIb) of theorem 2. The conditions (155) and
(156) prevent exceptional solutions. The regular solutions
are determined by the functions

f̃(u) =−
1

4

(
ξ20− ξ

2
1− ξ

2
2

1
8g
2−u

−
ξ23

− 18g
′2−u

)
, (157)

f̃ ′(u) =−
1

4

(
ξ20 − ξ

2
1− ξ

2
2(

1
8g
2−u

)2 − ξ23(
− 18g

′2−u
)2
)
,

(158)

K0(u) =−
1

2

ξ0
1
8g
2−u

, (159)

where we omitted the insertions (149) for a compact nota-
tion. Employing again the conditions (155) and (156) we
find the following.
The function f̃ ′(u) always has two zeros and those ze-

ros imply values ofK0(u) with opposite signs. The physical
solution withK0(u)> 0 has the Lagrange multiplier

u0 =
1

8

|ξ3|g2+
√
ξ20 − ξ

2
1− ξ

2
2 g
′2

|ξ3|−
√
ξ20 − ξ

2
1− ξ

2
2

, (160)

Fig. 2. The global minimum determining functions f̃ ′(u) and

K0(u) for the MSSM, see (158) and (159), with |µ|
2+m2Hd =

157486 GeV2, |µ|2+m2Hu =−2541 GeV
2, |m23|= 15341 GeV

2.
The small boxes show the functions with enhanced ordinate
resolution in the region around the physically relevant zero
of f̃ ′(u)
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which is positive. Figure 2 shows the functions f̃ ′(u),
K0(u) for an example set of parameters (corresponding
to the SPS1a scenario [65] at the tree level). We conclude
that (155) and (156) guarantee the existence of the station-
ary point K̃(u0), which fulfils criterion (II) of theorem 3
and therefore is the global minimum with the required
EWSB pattern. Moreover, there are no other local minima.
Note from (148) and (149) that it is always possible

to choose a basis with ξ1 = −|m23|, ξ2 = 0 without af-
fecting any other parameters. We further choose a gauge
where (112) and (113) hold, and perform the rotation (114)
with

tanβ =

√
ξ0|ξ3|+

√
ξ20 − ξ

2
1− ξ

2
2 ξ3

ξ0|ξ3|−
√
ξ20 − ξ

2
1− ξ

2
2 ξ3

(161)

into a basis of the form (115) and (116), which has the new
parameters

ξ′ =

⎛
⎜⎜⎝
−c2β |m23|− s2β

1
2

(
m2H1−m

2
H2

)
0

−s2β |m23|+ c2β
1
2

(
m2H1−m

2
H2

)
⎞
⎟⎟⎠ , (162)

E′ =
1

8

⎛
⎝−g

2+ s22β ḡ
2 0 − 12s4β ḡ

2

0 −g2 0
− 12s4β ḡ

2 0 −g2+ c22β ḡ
2

⎞
⎠ , (163)

with the abbreviations ḡ2 := g2+ g′2 and s2β := sin 2β etc.
We insert the expressions into the formulae of Sect. 7 and
use

m2W :=

(
1

2
gv0

)2
, m2Z :=

(
1

2
ḡv0

)2
, (164)

with v0 =
√
2K0(u0). According to (144), the fact that

ξ′2 = η
′
12 = 0 implies tree-level CP conservation within the

Higgs sector of the MSSM. We obtain the mass squares

m2A0 = 2v
2
0 (η

′
22+u0) , m

2
H± =m

2
A0+m

2
W (165)

for the pseudoscalar boson A0 := h′′ and the charged
bosons H±, which are already mass eigenstates. The non-
diagonal part of the neutral mass matrix is

M2
∣∣
neutral,
CP even

=

(
c22βm

2
Z − 12s4βm

2
Z

− 12s4βm
2
Z m2

A0
+ s22βm

2
Z

)
(166)

in the basis (ρ, h′). Its diagonalisation leads to the mass
squares

m2h0,H0 =
1

2

(
m2A0+m

2
Z

∓
√(
m2
A0
+m2Z

)2
−4 c22βm

2
A0
m2Z

)
(167)

for the mass eigenstates h0,H0. They are obtained from
(
H0

h0

)
=

(
cosα′ sinα′

− sinα′ cosα′

)(
ρ
h′

)
, (168)

with the mixing angle α′ determined by

cos 2α′ =−
m2
A0
− c4βm2Z

m2
H0
−m2

h0

,

sin 2α′ =−
s4βm

2
Z

m2
H0
−m2

h0

. (169)

Performing the rotation (114) on the complete doublets,
as described above, leads to states ρ, h′ with simple cou-
plings to the gauge bosons, e.g. vanishingZZh′ andWWh′

couplings at tree level. However, usually the real parts of
the neutral doublet components are excluded from that ro-
tation. Applying the inverse of the rotation (114) to only
the neutral components (ρ, h′) gives

√
2(ReH11 ,ReH

2
2 ).

The mass matrix in this basis is diagonalised analogously
to (168), where α′ is replaced by the mixing angle α with

cos 2α=− cos 2β
m2
A0
−m2Z

m2
H0
−m2

h0

,

sin 2α=− sin 2β
m2
A0
+m2Z

m2
H0
−m2

h0

, (170)

which is the well-known result.

8.2 Stationary points for THDM of Gunion et al.

We continue the discussion of the potential from [16, 17],
for which we derived the stability conditions in Sect. 4;
see (79) et seq. Note that we consider the shifted potential
according to V (K̃= 0) = 0. The parameters of V4 are given
by η00, η and E as in (81), while we have

ξ0 =−λ1v
2
1−λ2v

2
2−2λ3

(
v21+ v

2
2

)
,

ξ =

⎛
⎜⎜⎝
−v1v2

(
λ5 cos ξ+

λ7
2 sin ξ

)

−v1v2
(
λ6 sin ξ+

λ7
2 cos ξ

)
−λ1v21+λ2v

2
2

⎞
⎟⎟⎠ (171)

for the parameters of V2. Here, v1, v2 and ξ denote the pa-
rameters of the potential (79), irrespective of their mean-
ing for the vacuum expectation values. The function f̃ ′(u)
constructed for this potential according to (103) exhibits
the zero

µ̃=
1

4
λ4 , (172)

whose associated solution K̃(µ̃) is always a stationary
point. It can be represented by the field configuration

ϕ1|µ̃ =

(
0
v1

)
, ϕ2|µ̃ =

(
0
v2 e

iξ

)
. (173)

If all λi > 0 it is immediately obvious from the definition
of the potential that this is the global minimum, which is
furthermore non-trivial unless both v1, v2 are zero.
However, the quartic stability conditions (84) do not re-

quire the λi to be positive. In the general case there can
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be more than one local minimum with the required EWSB,
and the stationary point (173) is not necessarily the global
minimum (we find parameters where (173) is only a sad-
dle point, while another solution provides an admissible

global minimum for a stable potential). The function f̃ ′(u)
may have up to five additional zeros which can lead to fur-
ther regular stationary points. Also exceptional stationary
points may occur for special parameter combinations. We
do not find analytical expressions for the remaining zeros
of f̃ ′(u) for the general case. Instead we apply the methods
described in the previous sections in a semi-analytical way
and determine the zeros of f̃ ′(u) numerically. We assure
the stability conditions (84) to hold for the chosen pa-
rameter values. The stationary points with K0 = |K| > 0
and the largest Lagrange multiplier u > 0 are the required
global minima. In order to classify also the other solu-
tions, we compute m2

H±
and the eigenvalues of M2

neutral

for each stationary point, as described in the previous sec-
tions for the global minimum. A solution for which all of
these values are positive is a local minimum. Mixed posi-
tive and negative values mean that the solution is a saddle
point. Note that for a global minimum different from (173),
the potential parameters v1, v2 and ξ lose their simple
meaning. For example, we find that the global minimum
acquires a non-vanishing CP violating phase for certain
parameters with ξ = 0, λ5 = λ6 �= 0 and λ7 �= 0.
Figure 3 shows the potential at the stationary points

with K0 = |K|> 0 for the particular parameter values de-
scribed in the caption. This example features tree-level
CP conservation within the Higgs sector: ξ = λ7 = 0 leads
to ξ2 = 0 and, by (97) and λ4 �= λ6, to K2 = 0 (i.e. triv-
ial phases) at the global minimum. In the basis with (115)
and (116) we then have ξ′2 = η

′
12 = 0, implying CP conser-

vation by (144). Note that even with the simple parameter
combinations chosen for Fig. 3, the structure of the station-
ary points can be non-trivial. In the example λ1 and λ2
are equal and varied simultaneously. For the plotted range,
where λ1 is negative, the global minimum is a regular so-
lution and differs from (173), which is only a local mini-

Fig. 3. The potential V of [16, 17],
shifted to V (K̃ = 0) = 0, at all station-
ary points with K0 = |K| > 0 in de-
pendence of λ1, where λ2 = λ1. The
other parameters are λ3 = 0.1, λ4 =
0.2, λ5 = λ6 = 0.4, v1 = 30GeV, v2 =
171 GeV, λ7 = 0, ξ = 0. The lines rep-
resent regular stationary points, where
the solid curve corresponds to the “ob-
vious” solution with tan β = v2/v1 and

v0 =
√
2(v21+v

2
2), which is a local min-

imum for the chosen parameters. For
λ1 = λ2 = 0 there are two degenerate ex-
ceptional minima and regular solutions
only for the saddle points. Depending
on λ1 = λ2, the global minimum is given
by that local minimum out of the two
which has the lower potential

mum. For λ1 = 0 there are two exceptional and degener-
ate minima. The figure shows for positive λ1 the expected
behaviour and shows that (173) becomes the global min-
imum, but also that for 0< λ1 < 0.0268 a second regular
local minimum exists. Two stationary points disappear for
the plotted range above λ1 > 0.0268 because there the cor-

responding two zeros of f̃ ′(u) have a non-vanishing imagi-
nary part.

9 Conclusions

We have analysed the scalar potential of the general
THDM. In order to give an acceptable theory, this poten-
tial has to obey certain criteria. The potential should be
stable; that is, bounded from below, and lead to the EWSB
pattern observed in Nature. The conditions found for the
stability of the potential and for EWSB are transparent
and compact if the potential is written down in terms of
gauge invariant field functions (26). These conditions al-
low for a simple application to every specific THDM. We
illustrated our method in two examples, namely the MSSM
potential as well as the THDMpotential introduced byGu-
nion et al. [16, 17]. In the case of the MSSM we could easily
reproduce all well-known results. For the potential of Gu-
nion et al. we could clarify some interesting aspects of the
model; see Fig. 3.
We note that the method presented here may also be

extendable to general multi-Higgs-doublet models. A first
step in this direction is done in Appendix B. Further, in
a more detailed study it is mandatory to take quantum
corrections to the Higgs potential into account. For the re-
sulting effective Higgs potential the conditions for stability
and for EWSB are then in general modified.
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Appendix A: Gauge orbits

Here we give the proof that the gauge orbits of the
Higgs fields of the THDM are parametrised by four vec-
tors (K0,K) satisfying (36), or equivalently, by positive-
semidefinite matrices K; see (25) and (26). Indeed, let us
consider two Higgs doublets as in (18),

ϕαi (x), i= 1, 2, α=+, 0 . (A.1)

We arrange these in a 2×2 matrix

φ(x) := (ϕαi (x)) =

(
ϕ+1 (x) ϕ

0
1(x)

ϕ+2 (x) ϕ
0
2(x)

)
. (A.2)

Then we have from (25)

K(x) = φ(x)φ†(x) . (A.3)

The change of basis (30) means the transformation

φ(x)→ φ′(x) = Uφ(x) . (A.4)

A gauge transformation from the SU(2)L×U(1)Y gauge
group means

ϕαi (x)→ ϕ
′α
i (x) = (UG(x))αβ ϕ

β
i (x) , (A.5)

where

UG(x) ∈ U(2) . (A.6)

Thus, under a gauge transformation the matrix φ(x) be-
haves as

φ(x)→ φ′(x) = φ(x)UTG(x) . (A.7)

As we discussed in Sect. 3 any matrix K(x) formed
from the Higgs fields according to (25), which is equivalent
to (A.3), must be positive semidefinite. Conversely, given
any positive-semidefinite matrixK(x) we can diagonalise
it by a 2×2 unitary transformationW (x):

K(x) =W (x)

(
κ1(x) 0
0 κ2(x)

)
W †(x) ,

W †(x)W (x) = 1I . (A.8)

Since we have κ1(x) ≥ 0 and κ2(x) ≥ 0 we can set

φ(x) =W (x)

(√
κ1(x) 0

0
√
κ2(x)

)
(A.9)

and get

K(x) = φ(x)φ†(x) . (A.10)

With this we have proven the following.

– For any positive-semidefinite matrix K(x) there are
Higgs fields satisfying (A.3) respectively (25).

Now suppose that we have a given positive-semidefinite
matrixK(x) and two Higgs-field matrices φ(x), φ′(x), both
satisfying (A.3),

K(x) = φ(x)φ†(x) = φ′(x)φ′†(x) . (A.11)

We want to show that φ′(x) and φ(x) are then related by
a gauge transformation (A.7). We consider three cases.

1. K(x) = 0. Then φ(x) = φ′(x) = 0 and (A.7) is trivially
fulfilled.

2. K(x) > 0, that isK(x) is positive definite. Then

detK(x) = |detφ(x)| 2 = |detφ′(x)| 2 > 0, (A.12)

and both φ(x) and φ′(x) have an inverse. We set

φ−1(x)φ′(x) = UTG(x) (A.13)

and find from (A.11)

U†G(x)UG(x) = 1I ; (A.14)

that is, UG(x) ∈ U(2), and

φ′(x) = φ(x)UTG (x) . (A.15)

Thus φ′(x) and φ(x) satisfy (A.7), and they are related
by a gauge transformation.

3. K(x) has rank 1; that is, the eigenvalues are

κ1(x) > 0, κ2(x) = 0 . (A.16)

With the matrixW (x) diagonalisingK(x) (see (A.8))
we have then from (A.11)

(
κ1(x) 0
0 0

)
=
(
W †(x)φ(x)

) (
W †(x)φ(x)

)†

=
(
W †(x)φ′(x)

) (
W †(x)φ′(x)

)†
.

(A.17)

From this we see that

W †(x)φ(x) =

(
χ+1 (x) χ

0
1(x)

0 0

)
,

W †(x)φ′(x) =

(
χ′+1 (x) χ

′0
1 (x)

0 0

)
, (A.18)

where

χ†1(x)χ1(x) = χ
′†
1 (x)χ

′
1(x) = κ1(x) , (A.19)

with the composition of the vectors χi(x), χ
′
i(x) defined

as for the vectors ϕi(x). Therefore we can find a matrix
UG(x) ∈ U(2) such that

χ′α1 (x) = (UG(x))αβ χ
β
1 (x) , (A.20)
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which implies

W (x)φ′(x) =W (x)φ(x)UTG (x) ,

φ′(x) = φ(x)UTG(x) . (A.21)

That is, φ′(x) and φ(x) are related by a gauge trans-
formation.

With this we have completed the proof of the following
statement.

Theorem 4. Any two Higgs-doublet fields giving the
same matrix K(x) (25), respectively (A.3), are related by
a gauge transformation. The space of gauge orbits can be
parametrised by four-vectors (K0,K) lying on and inside
the forward light cone; see (36).

We close this appendix with a supplementary note
to Sect. 6 on the breaking of the SU(2)L×U(1)Y gauge
group. The matrix (A.2) of vacuum expectation values is

φvac =

(
v+1 v

0
1

v+2 v
0
2

)
. (A.22)

If the global minimum of the potential occurs with K0 >
|K| the corresponding matrixK has rank 2. Then
from (A.3) and (A.12) we see that also φvac has rank 2.
Invariance of φvac under a gauge transformation (A.7),

φvac = φvac U
T
G , (A.23)

is then only possible for UG = 1I. That is how we see with
the methods of this appendix that in this case the full
gauge group SU(2)L×U(1)Y is broken.

Appendix B: The case of n doublets

In this appendix we generalise the methods of Sect. 3 and
Appendix A to the case of n > 2 Higgs doublets. We con-
sider n complex Higgs-doublet fields

ϕi(x) =

(
ϕ+i (x)

ϕ0i (x)

)
, i= 1, . . . , n . (B.1)

All doublets are supposed to have the same weak hyper-
charge y =+1/2. In analogy to (25) we introduce the ma-
trix

K(x) =
(
Kij(x)

)
:=
(
ϕ†j (x)ϕi(x)

)
, (B.2)

which is now a n×nmatrix. The aim is to discuss the prop-
erties ofK(x). For this we introduce the n×nmatrix φ(x)
(compare (A.2))

φ(x) :=

⎛
⎜⎜⎜⎝
ϕ+1 (x) ϕ

0
1(x) 0 . . . 0

ϕ+2 (x) ϕ
0
2(x) 0 . . . 0

...
...
... · · ·

...
ϕ+n (x) ϕ

0
n(x) 0 . . . 0

⎞
⎟⎟⎟⎠ . (B.3)

It is easy to see that we have

K(x) = φ(x)φ†(x) . (B.4)

A change of basis among the doublets means

φ(x)→ φ′(x) = U φ(x) (B.5)

with a constant matrix U ∈ U(n),

U† U = 1In . (B.6)

A gauge transformation from SU(2)L×U(1)Y means

φ(x)→ φ′(x) = φ(x) ŨTG (x) , (B.7)

where ŨG(x) is block-diagonal:

ŨG(x) :=

(
UG(x) 0
0 1In−2

)
, (B.8)

with UG(x) ∈ U(2), and thus ŨG(x) ∈ U(n). We have then
from (B.7)

ϕ′αi (x) = (UG(x))αβ ϕ
β
i (x) , i= 1, . . . , n . (B.9)

From (B.3) and (B.4) we see that the matrixK(x) has the
following properties:

– K(x) is positive semidefinite,
– K(x) has rank ≤ 2.

That is,K(x) has at most two eigenvalues κ1(x), κ2(x)> 0
and the remaining eigenvalues κ3(x), . . . , κn(x) must be
zero. The rank condition can be seen as follows. We denote
by ψ+(x), ψ0(x) the first two column vectors of φ(x). Then
we have

φ(x) =

(
ψ+(x), ψ0(x), 0, . . . , 0

)
, (B.10)

K(x) =

(
ϕ+∗1 (x)ψ

+(x)+ϕ0∗1 (x)ψ
0(x), . . . ,

ϕ+∗n (x)ψ
+(x)+ϕ0∗n (x)ψ

0(x)

)
. (B.11)

That is, at most two column vectors of K(x) are linearly
independent.
Suppose now that we have a given positive-semidefinite

matrix K(x) of rank ≤ 2. Then we can diagonalise K(x)
and represent it as

K(x) =W (x)

⎛
⎜⎝
κ1(x) 0

0 κ2(x)
0

0 0

⎞
⎟⎠W †(x) (B.12)

withW (x) ∈ U(n) and κ1(x) ≥ 0, κ2(x) ≥ 0. We set now

φ(x) =W (x)

⎛
⎜⎝
√
κ1(x) 0

0
√
κ2(x)

0

0 0

⎞
⎟⎠ (B.13)
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and see easily that φ(x) is of the form (B.3) and satis-
fies (B.4). Thus to any positive-semidefinite matrix K(x)
of rank ≤ 2 there is at least one field configuration of the n
Higgs doublets such that (B.2) holds.
Suppose now that we have two field configurations; that

is, two matrices φ(x) and φ′(x) of the type (B.3) such that

K(x) = φ(x)φ†(x) = φ′(x)φ′†(x) . (B.14)

We can diagonaliseK(x) as in (B.12) and get

⎛
⎝
κ1(x) 0
0 κ2(x)

0

0 0

⎞
⎠= (W †(x)φ(x)) (W †(x)φ(x))†

=
(
W †(x)φ′(x)

) (
W †(x)φ′(x)

)†
.

(B.15)

From this we see that we must have

W †(x)φ(x) =

⎛
⎜⎝
χ+1 (x) χ

0
1(x)

χ+2 (x) χ
0
2(x)

0

0 0

⎞
⎟⎠ , (B.16)

W †(x)φ′(x) =

⎛
⎜⎝
χ′+1 (x) χ

′0
1 (x)

χ′+2 (x) χ
′0
2 (x)

0

0 0

⎞
⎟⎠ , (B.17)

where

χ†1(x)χ1(x) = χ
′†
1 (x)χ

′
1(x) = κ1(x) ,

χ†2(x)χ2(x) = χ
′†
2 (x)χ

′
2(x) = κ2(x) ,

χ†1(x)χ2(x) = χ
′†
1 (x)χ

′
2(x) = 0 . (B.18)

From this we conclude that we can find a matrix UG(x) ∈
U(2) such that

χ′αi = (UG(x))αβ χ
β
i (x), i= 1, 2 . (B.19)

Inserting this UG(x) into (B.8) we get

W †(x)φ′(x) =W †(x)φ(x) ŨTG (x) , (B.20)

and, sinceW (x) ∈ U(n),

φ′(x) = φ(x)ŨTG (x) . (B.21)

That is, φ′(x) and φ(x) are related by a gauge transform-
ation. We summarise our findings in a theorem.

Theorem 5. For n Higgs-doublet fields of the same weak
hypercharge y = +1/2 the matrix K(x) = (ϕ†j (x)ϕi(x)) is
a positive-semidefinite n×nmatrix of rank ≤ 2. For any
positive-semidefinite n×nmatrix K(x) of rank ≤ 2 there
are Higgs fields such that (B.2) holds. Any two field con-
figurations giving the same matrix K(x) are related by a
SU(2)L×U(1)Y gauge transformation. The matricesK(x)
form, therefore, the space of the gauge orbits of the n Higgs-
doublet fields.

As an example we consider three Higgs doublets.
The space of gauge orbits is then given by all positive-
semidefinite 3×3 matricesK(x) with detK(x) = 0.
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